Acta Crystallographica Section B Structural Science

ISSN 0108-7681

I. P. Zibrov,^a V. P. Filonenko,^b M. Sundberg^c* and P.-E. Werner^c

^aInstitute of Crystallography, Russian Academy of Sciences, 117 333 Moscow, Russia, ^bInstitute for High Pressure Physics, Russian Academy of Sciences, Troitsk, 142190 Moscow Region, Russia, and ^cDepartment of Inorganic and Structural Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden

Correspondence e-mail: marsu@inorg.su.se

© 2000 International Union of Crystallography Printed in Great Britain – all rights reserved Received 21 January 2000

Accepted 10 April 2000

Structures and phase transitions of B-Ta₂O₅ and Z-Ta₂O₅: two high-pressure forms of Ta₂O₅

A sample of Ta₂O₅, ditantalum pentaoxide, heat-treated in a 'toroid'-type high-pressure chamber at P = 8 GPa and T =1470 K, was studied by X-ray powder diffraction and highresolution transmission electron microscopy (HRTEM). Two high-pressure modifications of Ta₂O₅, isostructural with B-Nb₂O₅ and Z-Nb₂O₅, were identified from the X-ray powder pattern. Both structures were refined by the Rietveld method from the X-ray diffraction data: B-Ta₂O₅, a = 12.7853 (4), b =4.8537 (1), c = 5.5276 (2) Å, $\beta = 104.264$ (2)°, V = 332.45 Å³, Z = 4, space group C2/c; Z-Ta₂O₅, a = 5.2252 (1), b =4.6991 (1), c = 5.8534 (1) Å, $\beta = 108.200$ (2)°, V = 136.53 Å³, Z = 2, space group C2. The Z-Ta₂O₅ modification is new. The Ta atoms are six-coordinated in B-Ta₂O₅ and seven-coordinated in Z-Ta₂O₅. The two structures are closely related, which makes an intergrowth and a transformation between them possible. An idealized model of the intergrowth structure has been given. The HRTEM study showed defectrich B-Ta₂O₅ crystals, which could be interpreted as an intergrowth between the B-Ta₂O₅ and Z-Ta₂O₅ phases.

1. Introduction

It is well known that ditantalum pentaoxide undergoes a phase transformation from the low-temperature form, L-Ta₂O₅ (β phase), to the high-temperature polymorph, H-Ta₂O₅ (α phase) at ~1630 K (Lagergren & Magnéli, 1952). In both structures the Ta atoms are six- and seven-coordinated in the form of TaO₆ octahedra and pentagonal TaO₇ bipyramids (Stephenson & Roth, 1971*a*,*b*).

The ε -Ta₂O₅ modification was reported by Izumi & Kodama (1979) to form from tantalic acid treated with hydrochloric acid under the hydrothermal conditions P = 20 MPa and T = 570-620 K. This phase, which is isomorphous with B-Nb₂O₅, contains six-coordinated Ta atoms (TaO₆ octahedra) only. We prefer to use the designation B-Ta₂O₅ for this phase to emphasize the structural analogy with B-Nb₂O₅. Two additional polymorphs, TT-Ta₂O₅ and T-Ta₂O₅, have been prepared by soft chemistry methods (Hummel *et al.*, 1992). The latter structure is built from TaO₆ octahedra and pentagonal TaO₇ bipyramids. Several metastable modifications of Ta₂O₅ have also been reported over the years and a table showing the stable and metastable polymorphs of Ta₂O₅ is given in the paper by Hummel *et al.* (1992).

The present work was undertaken to investigate which modifications of Ta_2O_5 are formed at P = 8.0 GPa by using the high-pressure synthesis method developed for the tung-sten-oxygen and niobium-oxygen systems (Zibrov *et al.*, 1998).

2. Experimental

A Ta₂O₅ powder of 99.9% purity was pressed into pellets 4 mm in height and 5 mm in diameter. The pellets were covered with Mo or Pt foils to prevent contact between the specimen and the surrounding high-pressure cell material. A detailed description of the equipment and the experimental procedure has been given elsewhere (Zibrov *et al.*, 1998). The high-pressure synthesis was performed at P = 8.0 GPa and T = 1470 K. The temperature was held for 5 min, followed by quenching the sample to room temperature at a rate of ~ 100 K s⁻¹ before the pressure was released.

The sample was then analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy (HRTEM). The TEM samples were prepared by crushing a small quantity of the material under *n*-butanol in an agate mortar. A few drops of the resulting suspension were placed onto a porous carbon film supported by a copper grid. The HRTEM study was performed in a Jeol 3010 microscope (double tilt $\pm 20^{\circ}$, side-entry goniometer stage) operating at 300 kV. Simulated images were calculated using a local PC version of the *SHRLI* suite of multislice programs (O'Keefe *et al.*, 1978). The purity of the sample was checked by energydispersive X-ray spectroscopy (EDS analysis), using a Jeol 2000FXII transmission electron microscope equipped with a LINK AN10000 X-ray microanalysis system. The structure models are produced with *ATOMS* by Shape Software.

3. X-ray diffraction studies

For preliminary studies, an X-ray diffraction photograph was recorded in a subtraction geometry Guinier–Hägg focusing camera, with strictly monochromated Cu $K\alpha_1$ radiation ($\lambda = 1.540598$ Å). Finely powdered silicon (a = 5.430940 Å at 298 K; standard reference material 640b from the National

Figure 1

X-ray Rietveld refinement of $B-Ta_2O_5 + Z-Ta_2O_5$. The upper curve illustrates the observed data, and the lower curve the difference between observed and calculated data. The positions of all the allowed Bragg reflections are indicated by rows of vertical tick marks: $Z-Ta_2O_5$ upper and $B-Ta_2O_5$ lower marks.

Table 1

Experimental details.

1		
	B-Ta ₂ O ₅	Z-Ta ₂ O ₅
Crystal data		
Chemical formula	Ta ₂ O ₅	Ta ₂ O ₅
Chemical formula	441.89	441.89
weight		
Cell setting	Monoclinic	Monoclinic
Space group	C2/c	C2
a (Å)	12.7853 (4)	5.2252 (1)
$b(\dot{A})$	4.8537 (1)	4.6991 (1)
$c(\dot{A})$	5.5276 (2)	5.8534 (1)
β(°)	104.264 (2)	108.200 (2)
$V(Å^3)$	332.45	136.53
Z	4	2
$D_{\rm r} ({\rm Mg} {\rm m}^{-3})$	8.83	10.75
Radiation type	Cu $K\alpha_1$	Cu $K\alpha_1$
Wavelength (Å)	1.54056	1.54056
Temperature (K)	293	293
1 ()		
Data collection		
Diffractometer	Stoe PSD	Stoe Small PSD
Refinement		
Refinement on	Inet	Inet
$FWHM_{min}$ (°)	0.185	0.127
FWHM _{max} (°)	0.707	0.229
R_{f}	0.026	0.032
R_p	0.054	0.054
R _{wp}	0.071	0.071
d^{\dagger}	0.49	0.49
bl‡	3.06	3.06
No. of parameters	47	47
used		
Weighting scheme	$1/Y_i$	$1/Y_i$
$(\Delta/\sigma)_{max}$	0.2	0.2
Extinction method	None	None
Source of atomic	International Tables for	International Tables for
scattering factors	X-ray Crystallography	X-ray Crystallography
ç	(1974, Vol. IV)	(1974, Vol. IV)
Computer programs		
Data collection	Stoe Stadi/P, Powdat	Stoe Stadi/P, Powdat
Cell refinement	DBW3.2S	DBW3.2S
	(Wiles et al., 1988)	(Wiles et al. 1988)
Data reduction	Stoe Stadi/P, Rawdat	Stoe Stadi/P, Rawdat
Structure refinement	DBW3.2S	DBW3.2S
	(Wiles et al., 1988)	(Wiles et al., 1988)

† d = Durbin–Watson statistic d value according to Hill & Flack (1987). ‡ bl = Correction factor for serial correlation, calculated by the method of Bérar & Lelann (1991).

Bureau of Standards) was added as an internal 2θ standard. The photograph was measured with an automatic single-beam microdensitometer (Johansson *et al.*, 1980). The positions of the silicon peaks were used to correct for sample displacement, zero-point error and film shrinkage. The X-ray pattern was found to correspond to a mixture of two phases which are isostructural with *B*- and *Z*-Nb₂O₅ (Zibrov *et al.*, 1998). Their unit-cell parameters were very slightly different from those of the Nb-containing phases.

Diffraction data for structure refinements were collected on a Stoe Stadi/P powder diffractometer with a rotating sample in the symmetric transmission mode. A symmetric focusing germanium monochromator (focal distance = 440 mm) was used to give pure Cu $K\alpha_1$ radiation. The diffraction data were collected with a small linear position-sensitive detector (PSD)

Table 2

Fractional atomic coordinates and equivalent isotropic displacement parameters ($Å^2$) for *B*-Ta₂O₅.

 $(1/2) \sum \sum U^{ij} a^{i} a^{j} a$

* *

$U_{\rm eq} = (1/5) \Sigma_i \Sigma_j U' u u' \mathbf{a}_i . \mathbf{a}_j.$					
	Site	x	у	Ζ	U_{eq}
Та	8(<i>f</i>)	0.1395 (1)	0.2470 (15)	0.2623 (2)	1.10 (3)
O1	4(e)	0	0.102 (4)	1/4	1.8 (2)
O2	8(f)	0.389 (2)	0.051 (2)	0.990 (4)	1.8 (2)
O3	8(f)	0.299 (1)	0.431 (3)	0.355 (3)	1.8 (2)

Table 3

Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²) for Z-Ta₂O₅.

I I -	-(1)	$(3)\Sigma$	ΣI	Tij a ⁱ aj a

	Site	x	у	z	$U_{\rm eq}$
Та	4(c)	0.2172(3)	0	0.2696 (4)	1.73 (6)
01	4(c)	0.189 (4)	0.164 (5)	0.934 (4)	0.7 (3)
O2	4(c)	0.090 (5)	0.681 (5)	0.323 (4)	0.7(3)
O3	2(b)	0	0.201 (7)	1/2	0.7 (3)

covering 6.4° in 2θ . The PSD was moved in steps of 0.2°, 200 s per step, thus giving an average intensity of 32 measurements at each 2θ position. It has been found that the angular resolution of the diffractometer operated under these conditions is approximately the same as that of a Guinier-Hägg photograph. The 2θ range measured was $10 < 2\theta < 130^{\circ}$. The peak shapes were described by a symmetric pseudo-Voigt function. The Rietveld program used was a local version of the program DBW3.2S (Wiles et al., 1988). Owing to the overlap between peaks from the two phases, only cell parameters from the final Rietveld refinement are reported in Table 1, where also some general parameters from the refinement are shown. The positional parameters obtained for B- and Z-Ta₂O₅ are given in Tables 2 and 3, respectively. In Fig. 1 the observed diffractometer data and the difference between observed and calculated data are shown.¹

The final *R* factors obtained from the Rietveld refinements are very small. Thus, for example, the structure factor *R* values for *B*-Ta₂O₅ and *Z*-Ta₂O₅ are 0.026 and 0.032, respectively. In spite of these very small *R* factors, the accuracy in the positional coordinates is rather low, especially for the *Z* phase with a weight fraction of only 0.27, calculated from the refined scale factors. Another reason for the large s.u.'s in the positional coordinates is the severe serial-correlation problems, frequently present in full-profile Rietveld refinement studies, in this case leading to a correction factor of 3.06 (the *bl* factor reported in Table 1). This correction factor is applied in the calculation of s.u.'s for the interatomic distances shown in Tables 4 and 5.

Table 4 shows a comparison between B-Ta₂O₅ (this study) and a single-crystal study of B-Nb₂O₅ (Ercit, 1991). Although

Table 4

Selected interatomic distances (Å).

Comparison of single-crystal data for B-Nb₂O₅ (Ercit, 1991) with data for B-Ta₂O₅. The *bl* factor (*cf.* Table 1) is applied on the B-Ta₂O₅ data.

B-Ta ₂ O ₅		B-Nb ₂ O ₅	
Ta-Ta ⁱ	3.351 (5)	Nb-Nb ⁱ	3.4042 (6)
Ta-Ta ⁱⁱ	3.536 (6)	Nb-Nb ⁱⁱ	3.5758 (7)
Ta-O1	1.90 (2)	Nb-O1	1.910(1)
Ta-O2 ⁱⁱⁱ	2.10 (5)	Nb-O2 ⁱⁱⁱ	2.081 (2)
Ta-O2 ⁱ	1.67 (6)	$Nb-O2^{i}$	1.786 (2)
Ta-O3	2.17 (5)	Nb-O3	2.114 (2)
Ta-O3 ⁱ	2.24 (5)	Nb-O3 ⁱ	2.204 (2)
Ta-O3 ^{iv}	1.91 (5)	Nb-O3 ^{iv}	1.950 (2)
$O1 - O1^{v}$	2.94 (3)	$O1-O1^{v}$	2.958 (1)
$O1 - O2^{vi}$	2.80 (6)	$O1-O2^{vi}$	2.733 (2)
$O1 - O2^i$	2.75 (6)	$O1-O2^{i}$	2.860 (2)
$O1 - O3^{i}$	2.94 (5)	$O1-O3^{i}$	2.899 (2)
$O1 - O3^{iv}$	2.89 (5)	$O1-O3^{iv}$	3.001 (3)
$O2 - O2^{vii}$	2.86 (9)	$O2-O2^{vii}$	2.928 (4)
$O2 - O2^{viii}$	2.81 (9)	$O2-O2^{viii}$	2.837 (3)
$O2-O3^{ix}$	2.80 (8)	$O2-O3^{ix}$	2.636 (4)
$O2 - O3^{viii}$	2.63 (6)	$O2-O3^{viii}$	2.708 (3)
$O2-O3^{i}$	2.68 (8)	$O2-O3^{i}$	2.808 (3)
$O2-O3^{x}$	2.79 (6)	$O2-O3^{x}$	2.832 (3)
O3–O3 ⁱ	2.87 (7)	$O3-O3^{i}$	2.659 (3)
$O3 - O3^{x}$	2.84 (7)	$O3 - O3^{x}$	2.869 (3)
$O3-O3^{iv}$	2.84 (6)	O3–O3 ^{iv}	2.889 (3)

Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2} - y, 1 - z$; (ii) $-x, y, \frac{1}{2} - z$; (iii) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (iv) $\frac{1}{2} - x, -\frac{1}{2} + y, \frac{1}{2} - z$; (v) -x, -y, -z; (vi) $\frac{1}{2} - x, \frac{1}{2} + y, \frac{3}{2} - z$; (vii) 1 - x, -y, 2 - z; (viii) $x, -y, \frac{1}{2} + z$; (ix) $\frac{1}{2} - x, -\frac{1}{2} + y, \frac{3}{2} - z$; (x) $x, 1 - y, \frac{1}{2} + z$.

the Me-Me distances are slightly different, it is not easy to identify statistically verifiable differences between the TaO₆ and NbO₆ octahedra. It is even more difficult to find any other differences between interatomic distances in Z-Ta₂O₅ and Z-Nb₂O₅ (*cf.* Table 5) besides some minor deviations between the Me-Me distances. In general it can be concluded that the type of seven-coordination found in Z-Nb₂O₅, with one short and six longer Me-O distances, is also present in Z-Ta₂O₅. The crystal structure of Z-Ta₂O₅ is shown in Fig. 2. The Ta atoms are coordinated by four O atoms in or near one plane

Figure 2

The crystal structure of Z-Ta₂O₅. Note the irregular polyhedra of sevencoordinated Ta, which form pairs of edge-sharing polyhedra in two layers at y = 0 and y = 1/2.

¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: OS0050). Services for accessing these data are described at the back of the journal.

research papers

above and by three O atoms in or near a plane below, giving the irregular coordination of seven O atoms around tantalum (TaO $_7$ polyhedron).

The very large increase in density, from 8.83 g cm⁻³ in *B*-Ta₂O₅ to 10.75 g cm⁻³ in *Z*-Ta₂O₅, is probably the reason for some very short O–O contacts in the *Z* phase. Thus, the volume per O atom is reduced from 16.6 to 13.6 Å³. As can be seen in Table 5 similar short O–O contacts were also found in *Z*-Nb₂O₅ (Zibrov *et al.*, 1998). Although the O2–O3 distance of 2.07 Å in *Z*-Ta₂O₅ and the O1–O1 distance of 2.03 Å in *Z*-Nb₂O₅ should be judged in relation to the s.u.'s 0.08 and 0.12 Å, respectively, the existence of O–O contacts around 2.16–2.18 Å in the Ta and Nb *Z*-phases seems to be statistically verified (*cf.* Table 5). The shortest O–O contact reported by Shannon & Prewitt (1969) is 2.15 Å in the calcite-type structure of NaNO₃.

Figure 3

The crystal structure of B-Ta₂O₅ is projected along (a) [010] and (b) [001]. The two layers of octahedra at y = 3/4 and y = 1/4 are shown in (c) and (e) ([010] projection), and in (d) and (f) ([001] projection). The unit cell is drawn.

4. Structural relationship

The crystal structures of B-Ta₂O₅ and Z-Ta₂O₅ are closely related, as can be seen from Figs. 3 and 4, respectively. Both phases have unit cells with monoclinic symmetry and the *b*axis parameters are approximately the same (~4.8 Å). The small difference, ~0.3 Å, between the length of the *B*-Ta₂O₅ *c* axis and the length of the *Z*-Ta₂O₅ *a* axis should also be noted.

The B-Ta₂O₅ structure, projected along [010] and [001] in Figs. 3(*a*) and (*b*), respectively, can be described as built up from rutile-like slabs of edge-sharing TaO₆ octahedra, two octahedra wide, and linked by corner-sharing. The O atoms are arranged in a slightly distorted hexagonally close-packed array (h.c.p.). Alternatively, the B-Ta₂O₅ structure can be considered by layers stacked parallel to the *ac* plane, as can be

seen in Figs. 3(c)-(f). The two layers at y = 3/4 and y = 1/4 (Figs. 3c and e) consist of isolated strings of TaO₆ octahedra along [101]. The strings are composed of pairs of edge-sharing octahedra linked in a zigzag arrangement by cornersharing.

The Z-Ta₂O₅ structure, shown in [010] and [100] projections in Figs. 4(a) and (b), is much more dense than the *B*-Ta₂O₅ structure in Figs. 3(a) and (b). It can be regarded as built up from 'rutile'-related slabs of edge-sharing TaO₇ polyhedra, two polyhedra wide. The slabs, which are parallel to the *a* axis, are connected by sharing O-atom corners. In analogy with the B-Ta₂O₅ structure, Z-Ta₂O₅ can be considered as a layer structure, of which the two levels parallel to the ac plane at y = 0 and y = 1/2 are shown in Figs. 4(c)-(f). Fig. 4(c)shows that the layer is built up of strings consisting of edge-sharing pairs of TaO₇ polyhedra, linked by corners to form a zigzag array along [101]. In Z-Ta₂O₅ the strings are mutually linked by cornersharing to form a two-dimensional network of corner-sharing pairs of TaO₇ polyhedra, as can be seen in Figs. 4(c) and (e). The similarity between the two structures is apparent.

The fact that $B\text{-}Ta_2O_5$ and $Z\text{-}Ta_2O_5$ have closely related structures with *b*-axis parameters of \sim 4.8 Å, and that they can be considered as layer structures

parallel to the *ac* plane, makes an intergrowth between them very likely. The structures can be mutually linked by sharing O-atom corners through a common oxygen plane (Fig. 5*a*), which is parallel to *bc* in *B*-Ta₂O₅ and *ab* in *Z*-Ta₂O₅. A possible model of the intergrowth boundary is illustrated in Figs. 5(*b*) and (*c*). The model suggests that the two modifications can transform from one form to another by small metaland oxygen-atom displacements with an accompanying compression of the structures (when pressure is applied) *B*-Ta₂O₅ \rightarrow *Z*-Ta₂O₅, or expansion *Z*-Ta₂O₅ \rightarrow *B*-Ta₂O₅ (when pressure is released).

5. Electron microscopy study

The HRTEM study of thin fragments from the Ta_2O_5 sample revealed many faulted crystals. Two examples of HRTEM micrographs, taken close to Scherzer conditions, of *B*-Ta₂O₅ crystals in [010] and [001] projections are presented in Figs. 6(a) and Fig. 7(a), respectively. The corresponding electron diffraction patterns are inserted. Both images show well

Figure 4

The crystal structure of Z-Ta₂O₅ is projected along (*a*) [010] and (*b*) [100]. The two layers of polyhedra at y = 0 and y = 1/2 are shown in (*c*) and (*e*) ([010] projection) and in (*d*) and (*f*) in [100] projection. The unit cell is outlined. The drawings are produced with *ATOMS* by Shape Software.

ordered crystal regions on both sides of a defect area. The black spots in Fig. 6(a) represent projected metal atoms. The slabs, two black spots wide (marked *B*), correspond to the rutile-like slabs of TaO₆ octahedra in the *B*-Ta₂O₅ structure. The wider slabs, four or six dark spots wide (marked *Z*), indicate either an intergrowth of the *Z*-Ta₂O₅ structure or a transition state between the two modifications.

Theoretical image simulations were performed for the *B*-Ta₂O₅ and *Z*-Ta₂O₅ structures, using the atomic coordinates obtained in the X-ray powder diffraction study (Tables 2 and 3). It was clear from the calculated electron diffraction patterns, the projected potentials and the simulated images that the two structures will give rise to similar HRTEM images at some defocus values. A set of simulated images in [010] projections of *B*-Ta₂O₅ (top) and *Z*-Ta₂O₅ (bottom) is shown in Fig. 6(*b*). The rutile-like slabs of polyhedra in the structures correspond to the slabs, two black spots wide, which can be seen in all simulated images. The black spots are slightly closer together and not so well resolved in the simulated images of the *Z*-Ta₂O₅ structure at the defocus values of -200 and

-250 Å. The HRTEM micrograph in Fig. 6(a), which illustrates the local structure of a B-Ta₂O₅ fragment at the atomic level, clearly shows that the projected Ta atoms (dark spots) in the slabs are not lined up in such straight rows parallel to the a axis as the simulated images display. Some spots are closer together and less well resolved, while others are further apart, especially in the wider slabs in the micrograph. These contrasting features indicate either some local compression of the B-Ta₂O₅ structure or some microdomains of Z-Ta₂O₅ intergrown with the B-Ta₂O₅ structure.

The electron diffraction pattern inserted in Fig. 7(a) shows that the $B-Ta_2O_5$ structure dominates in this crystal fragment. There is also good agreement between the contrast features in the simulated image of the B-Ta₂O₅ structure in the [001] projection (Fig. 7c) and the region surrounding the defect area in Fig. 7(a), which confirms the structure interpretation. The boundary between the defect area and the B-Ta₂O₅ region is disordered. Fig. 7(b) shows a simulated image of Z-Ta₂O₅ under the same experimental conditions as used in Fig. 7(c). There are some apparent similarities between the contrast features in the defect area and the simulated image in Fig. 7(b), which suggests a coexistence of the two modifications. It should be noted, however, that no ordered fragment of Z-Ta₂O₅ has been observed so far.

6. Phase transformations

The X-ray and HRTEM results presented above show that the L-Ta₂O₅ modification was not stable under the high-pressure conditions P = 8.0 GPa and T = 1470 K. A two-phase mixture of the *B*-Ta₂O₅ and *Z*-Ta₂O₅ polymorphs was obtained instead. Heating this product in an oxygen atmosphere to T = 770 K under ambient pressure resulted in a single-phase sample of *B*-Ta₂O₅. We also noted that further heating of the product under ambient pressure conditions resulted in transformation from *B*-Ta₂O₅ to *L*-Ta₂O₅, starting slightly above T = 1070 K. The latter phase transformation has been reported by Izumi & Kodama (1979). All products were white with a very faint touch of grey, suggesting that the phases are fully oxidized and thus of Ta₂O₅ stoichiometry. Moreover, no impurity peaks were observed in the EDS spectra. All these results suggest that upon heating under pressure *L*-Ta₂O₅

Figure 5

The common oxygen plane between the Z-Ta₂O₅ and B-Ta₂O₅ structures is illustrated in (*a*). The idealized structure model shows the intergrowth of Z-Ta₂O₅ (left) and B-Ta₂O₅ (right) ([010] zone). A possible connection between the two structures (*b*) within one layer perpendicular to the *b* axis is illustrated in (*c*).

Table 5

Selected interatomic distances (Å).

Comparison of Z-Nb₂O₅ data from Zibrov *et al.* (1998) and Z-Ta₂O₅. The s.u.'s are calculated with *bl* factors (*cf.* Table 1) applied.

Z-Ta ₂ O ₅		$Z-Nb_2O_5$	
Ta-Ta ⁱ	3.262 (9)	Nb-Nb ⁱ	3.213 (16)
Ta-Ta ⁱⁱ	3.321 (9)	Nb-Nb ⁱⁱ	3.398 (16)
Ta-O1 ⁱⁱⁱ	2.07 (7)	Nb-O1 ⁱⁱⁱ	2.05 (8)
Ta-O1 ^{iv}	2.22 (8)	Nb-O1 ^{iv}	2.09 (8)
Ta-O1 ^v	2.13 (7)	$Nb-O1^{v}$	2.18 (8)
Ta-O2 ^{vi}	1.71 (7)	Nb-O2 ^{vi}	1.74 (8)
Ta-O2 ^{vii}	2.06 (8)	Nb-O2 ^{vii}	2.02 (8)
Ta-O3	2.22 (4)	Nb-O3	2.27 (4)
Ta-O3 ^{vii}	2.18 (6)	Nb-O3 ^{vii}	2.16 (6)
O1-O1 ^{viii}	2.33 (11)	O1-O1 ^{viii}	2.03 (12)
$O1 - O1^{ix}$	2.49 (10)	$O1 - O1^{ix}$	2.56 (11)
$O1 - O2^{x}$	2.86 (10)	$O1 - O2^{x}$	2.83 (11)
$O1 - O2^{xi}$	2.57 (10)	$O1 - O2^{xi}$	2.55 (11)
$O1 - O2^{v}$	2.17 (11)	$O1 - O2^{v}$	2.29 (11)
$O1 - O2^{iv}$	2.99 (10)	$O1 - O2^{iv}$	2.82 (11)
01-03	2.43 (7)	01-03	2.46 (8)
$O2-O2^{iv}$	2.53 (10)	$O2-O2^{iv}$	2.66 (11)
O2-O3 ^{xii}	2.75 (11)	$O2-O3^{xii}$	2.89 (11)
O2–O3 ^{xiii}	2.07 (8)	$O2-O3^{xiii}$	2.16 (8)
O2-O3 ^{iv}	2.53 (11)	$O2-O3^{iv}$	2.52 (11)

Symmetry codes: (i) -x, y, -z; (ii) 1 - x, y, 1 - z; (iii) x, y, -1 + z; (iv) -x, y, 1 - z; (v) $\frac{1}{2} - x, -\frac{1}{2} + y, 1 - z$; (vi) x, -1 + y, z; (vii) $\frac{1}{2} + x, -\frac{1}{2} + y, z$; (viii) -x, y, 2 - z; (ix) $\frac{1}{2} - x, -\frac{1}{2} + y, 2 - z$; (x) -x, -1 + y, 1 - z; (xi) $\frac{1}{2} + x, -\frac{1}{2} + y, 1 + z$; (xii) x, 1 + y, z; (xiii) $\frac{1}{2} + x, \frac{1}{2} + y, 1 + z$; (xiii) x, 1 + y, z;

undergoes a phase transformation to B-Ta₂O₅, which is transformed to Z-Ta₂O₅ by increasing the pressure. The latter modification is probably not completely stable and partly

Figure 6

HRTEM image of the *B*-Ta₂O₅ ([010] zone) with the corresponding electron-diffraction pattern inserted is shown in (*a*). The rutile-like slabs are marked *B* and the defect slabs are marked *Z*. (*b*) A set of simulated images of *B*-Ta₂O₅ (top) and *Z*-Ta₂O₅ (bottom); crystal thickness $\simeq 30$ Å, defocus values = -200, -250 and -300 Å.

transforms reversibly to B-Ta₂O₅ when the pressure is released. The HRTEM study also showed both ordered and disordered B-Ta₂O₅ crystals, indicating a reversible transformation between the two high-pressure modifications. Reversible transformations between B and Z have previously been observed for the analogous Nb₂O₅ polymorphs (Zibrov *et al.*, 1998). The results obtained also show that B-Ta₂O₅ is a stable high-pressure modification of Ta₂O₅. Further investigation of the P-T phase diagram of Ta₂O₅ is under way.

7. Discussion

The structural study indicates that *B*-Ta₂O₅ and *Z*-Ta₂O₅ coexist at the atomic level. The latter phase, which is more dense, seems to form domains within the *B*-Ta₂O₅ structure. This is in agreement with previous observations made on the isostructural high-pressure phases of Nb₂O₅ (Zibrov *et al.*, 1998). It should also be mentioned that intergrowth of two high-pressure phases at the atomic level has previously been observed within other structure types. W₃O₈, for example, forms two high-pressure phases of the same stoichiometry, W₃O₈(I) and W₃O₈(II). The structure of W₃O₈(I), which is more dense, was observed to form domains within the W₃O₈(II) regions (Sundberg *et al.*, 1993). It is interesting to note that the oxygen arrangements parallel to (010) in *Z*-Ta₂O₅ and *Z*-Nb₂O₅ are almost identical and very similar to a part of that in W₃O₈(I).

Figure 7

HRTEM image of *B*-Ta₂O₅ ([001] zone) with the corresponding electrondiffraction pattern inserted is shown in (*a*). A defect region of *Z*-Ta₂O₅ can be seen in the middle of the micrograph. (*b*) Simulated image of *Z*-Ta₂O₅; defocus value -200 Å, crystal thickness ~ 30 Å. (*c*) Simulated image of *B*-Ta₂O₅; defocus value -200 Å, crystal thickness ~ 30 Å.

L-Ta₂O₅ and T-Nb₂O₅ are known to have closely related structures based on the same UO₃-type subcell units. This means that a similar relationship between the Z-Ta₂O₅ and L-Ta₂O₅ structures can be found, as was recently shown for the Z-Nb₂O₅ and T-Nb₂O₅ structures (Zibrov *et al.*, 1998). The L-Ta₂O₅ structure is built up of TaO₆ octahedra and pentagonal TaO₇ bipyramids, while Z-Ta₂O₅ is only composed of seven-coordinated Ta atoms in TaO₇ polyhedra of unusual shape. However, a similar type of seven-coordination as that observed in Z-Ta₂O₅ has been found in the mineral baddeleyite, ZrO_2 (McCullough & Trueblood, 1959), and in Nb₂Zr₆O₁₇ (Galy & Roth, 1973).

It should also be mentioned that the diffraction peaks characteristic of B-Ta₂O₅ are very broad, approximately twice as broad as those from the Z-Ta₂O₅ modification. Similar observations were made on the Nb₂O₅ polymorphs (Zibrov *et al.*, 1998). The reason for this phenomenon is still not clear. However, the broad peaks might reflect the transformation state from Z-Ta₂O₅ to B-Ta₂O₅ and the faults and intergrowth structures observed in the B-Ta₂O₅ crystals. This will be the subject of forthcoming studies.

The authors thank Dr Bengt-Olov Marinder for his kind interest in this work and for stimulating discussions. The research described here was partly made possible by a Visiting Scientist grant from the Royal Swedish Academy of Sciences through its Nobel Institute for Chemistry. This support is gratefully acknowledged. This study forms part of a research project financially supported by the Swedish Natural Science Research Council.

References

- Bérar, J. F. & Lelann, P. (1991). J. Appl. Cryst. 24, 1-5.
- Ercit, T. S. (1991). Miner. Petrol. 43, 217-223.
- Galy, J. & Roth, R. S. (1973). J. Solid State Chem. 7, 277-285.
- Hill, R. J. & Flack, H. D. (1987). J. Appl. Cryst. 20, 356-361.
- Hummel, H.-U., Fackler, R. & Remmert, P. (1992). Chem. Ber. 25, 551–556.
- Izumi, F. & Kodama, H. (1979). J. Less-Common Met. 63, 305-307.
- Johansson, K.-E., Palm, T. & Werner, P.-E. (1980). J. Phys. E, 13, 1289–1291.
- Lagergren, S. & Magnéli, A. (1952). Acta Chem. Scand. 6, 444-446.
- McCullough, J. D. & Trueblood, K. N. (1959). *Acta Cryst.* **12**, 507–511. O'Keefe, M. A., Buseck, P. R. & Iijima, S. (1978). *Nature*, **274**, 322–
- 324.
- Shannon, R. D. & Prewitt, C. T. (1969). Acta Cryst. B25, 925–945.
- Stephenson, N. C. & Roth, R. S. (1971a). Acta Cryst. B27, 1037–1044.
 Stephenson, N. C. & Roth, R. S. (1971b). J. Solid State Chem. 3, 145– 153
- Sundberg, M., Zakharov, N. D., Zibrov, I. P., Barabanenkov, Yu. A., Filonenko, V. P. & Werner, P. (1993). Acta Cryst. B49, 951–958.
- Wiles, D. B., Sakthivel, A. & Young, R. A. (1988). *DBW3.2S User's Guide*, Version 8804. School of Physics, Georgia Institute of Technology, Atlanta, USA.
- Zibrov, I. P., Filonenko, V. P., Werner, P.-E., Marinder, B.-O. & Sundberg, M. (1998). J. Solid State Chem. 141, 205–211.